Skip to main content

 items

jumping rivers

Menu
	 Home
	 About 	Overview
	Join Us
	Community
	Conferences
	Contact

	 Training 	Overview
	Course Catalogue
	Public

	 Posit 	Overview
	License Resale
	Managed Services
	Health Check

	 Data Science	Overview
	Visualisation and Dashboards
	Open-Source Data Science
	Data Science as a Service

	 Data Engineering	Overview
	Cloud Solutions
	Enterprise Applications

	 Our Work 	Blog
	Case Studies
	diffify

Setting the Graphics Device in a RMarkdown Document
Author:
Colin Gillespie
Published: April 15, 2020
tags:
r,
graphics,
markdown,
rmarkdown,
knitr,
cairo

In our recent post about saving R graphics, it became obvious that achieving consistent graphics across platforms or even saving the “correct” graph on a particular OS was challenging. Getting consistent fonts across platforms often failed, and for the default PNG device under Windows, anti-aliasing was also an issue. The conclusion of the post was to use
	grDevices::cairo_pdf() for saving PDF graphics or
	grDevices::png(..., type = "cairo_png") for PNGs or alternatively
	the new {ragg} package.

In many workflows, function calls to graphic devices are not explicit. Instead, the call is made by another package, such as {knitr}.
When kniting an Rmarkdown document, the default graphics device when creating PDF documents is grDevices::pdf() and for HTML documents it’s grDevices::png(). As we demostrated, these are the worst possible choices!

Do you use Professional Posit Products? If so, check out our managed Posit services

PDFs and PNGs
If you want to save your graphs as PDFs, then simply set
knitr::opts_chunk$set(dev = "cairo_pdf")

at the top of Rmarkdown file. The PNG variant is slightly different as we need to specify the device dev and also pass the type argument to the device
knitr::opts_chunk$set(dev = "png", dev.args = list(type = "cairo-png"))

These options, i.e. dev = "cairo_pdf", can also be set at individual chunks.
The {ragg} Package
Setting the agg_png() function from the {ragg} package as the graphics device is somewhat more tricky as it doesn’t come pre-defined within {knitr}. The {knitr} docs states that
if none of the 20 built-in devices is appropriate, we can still provide yet another name as long as it is a legal function name which can record plots (it must be of the form function(filename, width, height))

The arguments of agg_png() are
formals(ragg::agg_png)[1:3]
#> $filename
#> [1] "Rplot%03d.png"
#>
#> $width
#> [1] 480
#>
#> $height
#> [1] 480

This suggests we can simply set ragg::agg_png() as the {knitr} dev, as its of the correct form. However, careful reading of the knitr source code highlights that the dpi argument isn’t passed to new devices and that the units should be inches. So after a “little” experimentation, we have
ragg_png = function(..., res = 192) {
 ragg::agg_png(..., res = res, units = "in")
}
knitr::opts_chunk$set(dev = "ragg_png", fig.ext = "png")

Remember the dpi argument isn’t passed to ragg_png(), so if you want to change the resolution per chunk, then you will need to use
dev.args = list(ragg_png = list(res = 192))

As {ragg} is being developed by RStudio, I’m guessing that at some point in the near future, ragg will become native to {knitr}.

Join Jumping Rivers' Monthly Newsletter
Find out more
Email address

We keep your data secure and will never share your details. By subscribing, you agree to our privacy policy.

Recent Posts
	Spring clean your R packages
	An introvert's guide to networking at a conference
	SatRdays London 2024: Speakers
	A Blog Post About the Blog
	Parquet vs the RDS Format
	Events at Jumping Rivers 2024
	Reading and Writing Data with {arrow}
	Security Headers for Shiny Applications
	Effect of Shiny Widgets with Google Lighthouse
	Analysing Shiny App start-up Times with Google Lighthouse

Top Tags
	r (177)
	python (57)
	shiny (42)
	tidyverse (16)
	conferences (15)
	packages (12)
	training (12)
	events (11)
	stan (9)
	graphics (8)

Authors
	Amieroh Abrahams
	Clarissa Barratt
	Tim Brock
	Rhian Davies
	Colin Gillespie
	Parisa Gregg
	Shane Halloran
	Russ Hyde
	Liam Kalita
	Osheen MacOscar
	Sebastian Mellor
	Myles Mitchell
	Keith Newman
	Astrid Radermacher
	Theo Roe

Follow Us
	GitHub
	Twitter
	LinkedIn
	YouTube
	Eventbrite

Find Us
The Catalyst
Newcastle Helix
Newcastle, NE4 5TG
Get
Directions

Contact Us
	hello@jumpingrivers.com
	+ 44(0) 191 432 4340

Newsletter
Sign up

Events
	North East Data Scientists Meetup
	Leeds Data Science Meetup
	SatRdays London 2024
	Shiny in Production 2024

©2016 - present. Jumping Rivers Ltd

	Privacy Notice
	|
	Booking Terms

