If you’ve been using R for a while, you’ve likely accumulated a hodgepodge of useful code along the way. Said hodgepodge might include functions you source into multiple projects; bits and bobs that you copy and paste where needed; or code that solved a particularly esoteric problem and will never be applicable elsewhere, but you still enjoy revisiting sometimes. We all do it. If you’re anything like me, your personal library of code has grown gradually and haphazardly.
package
Published: January 29, 2019
When discussing how to speed up slow R code, my first question is what is your computer spec? It’s always surprised me that people are wondering why analysing big data is slow, yet they are using a five-year-old cheap laptop. Spending a few thousand pounds would often make their problems disappear. To quantify the impact of the CPU on analysis, I created the package {benchmarkme}. The aim of this package is to provide a set of benchmarks routines and data from past runs.
Recent Posts
- Shiny in Production: Sponsors
- Reproducible reports with Jupyter
- posit::conf(2023)
- Shiny in Production: Full speaker lineup
- Using Stan to analyse global UFO sighting reports
- Talks to watch at the RSS International Conference 2023
- Our ISO 27001 Certification
- Best Practices for Data Cleaning and Preprocessing
- SatRdays London 2023 - Recordings
- Generate multiple presentations with Quarto parameters