Maintaining training materials Over the last few years, we increased both the number and types of training courses we offer. In addition to our usual R courses in {dplyr} and {shiny}, we also offer training on Docker, Python, Stan, TensorFlow, and others. As the number of courses we offer increased, so did the maintenance burden of our associated training materials (lecture notes, slides, exercises, and more). To ease this burden, and to assist in ensuring that our training materials build consistently, we developed an R package called {jrNotes2}.
reticulate
Recent Posts
- Shiny in Production: Sponsors
- Reproducible reports with Jupyter
- posit::conf(2023)
- Shiny in Production: Full speaker lineup
- Using Stan to analyse global UFO sighting reports
- Talks to watch at the RSS International Conference 2023
- Our ISO 27001 Certification
- Best Practices for Data Cleaning and Preprocessing
- SatRdays London 2023 - Recordings
- Generate multiple presentations with Quarto parameters